AGW Observer

Observations of anthropogenic global warming

New research from last week 10/2011

Posted by Ari Jokimäki on March 14, 2011

Here is the new research published last week. I’m not including everything that was published but just some papers that got my attention. Those who follow my Facebook page (and/or Twitter) have already seen most of these, as I post these there as soon as they are published. Here, I’ll just put them out in one batch. Sometimes I might also point out to some other news as well, but the new research will be the focus here. Here’s the archive for the news of previous weeks. By the way, if this sort of thing interests you, be sure to check out A Few Things Illconsidered, they have a weekly posting containing lots of links to new research and other climate related news. Planet 3.0 also reports new research.

Published last week:

Vegetation decrease in Europe since 1997

Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 – Piao et al. (2011) “Monitoring changes in vegetation growth has been the subject of considerable research during the past several decades, because of the important role of vegetation in regulating the terrestrial carbon cycle and the climate system. In this study, we combined datasets of satellite-derived Normalized Difference Vegetation Index (NDVI) and climatic factors to analyze spatio-temporal patterns of changes in vegetation growth and their linkage with changes in temperature and precipitation in temperate and boreal regions of Eurasia (>23.5°N) from 1982 to 2006. At the continental scale, although a statistically significant positive trend of average growing season NDVI is observed (0.5×10−3 yr−1, P=0.03) during the entire study period, there are two distinct periods with opposite trends in growing season NDVI. Growing season NDVI has first significantly increased from 1982 to 1997 (1.8×10−3 yr−1, P<0.001), and then decreased from 1997 to 2006 (−1.3×10−3 yr−1, P=0.055). This reversal in the growing season NDVI trends over Eurasia are largely contributed by spring and summer NDVI changes. Both spring and summer NDVI significantly increased from 1982 to 1997 (2.1×10−3 yr−1, P=0.01; 1.6×10−3 yr−1P<0.001, respectively), but then decreased from 1997 to 2006, particularly summer NDVI which may be related to the remarkable decrease in summer precipitation (−2.7 mm yr−1, P=0.009). Further spatial analyses supports the idea that the vegetation greening trend in spring and summer that occurred during the earlier study period 1982–1997 was either stalled or reversed during the following study period 1997–2006. But the turning point of vegetation NDVI is found to vary across different regions.” Shilong Piao, Xuhui Wang, Philippe Ciais, Biao Zhu, Tao Wang, Jie Liu, Global Change Biology, 2011, DOI: 10.1111/j.1365-2486.2011.02419.x.

Cosmic ray contribution to climate change is negligible

Cosmic ray effects on cloud cover and their relevance to climate change – Erlykin et al. (2011) “A survey is made of the evidence for and against the hypothesis that cosmic rays influence cloud cover. The analysis is made principally for the troposphere. It is concluded that for the troposphere there is only a very small overall value for the fraction of cloud attributable to cosmic rays (CR); if there is linearity between CR change and cloud change, the value is probably ~1% for clouds below ~6.5km, but less overall. The apparently higher value for low cloud is an artifact. The contribution of CR to ’climate change’ is quite negligible.” A.D. Erlykin, B.A. Laken and A.W. Wolfendale, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2011.03.001.

Wider perspective on dangerous climate change

Beyond 2°C: redefining dangerous climate change for physical systems – Lenton et al. (2011) “Most efforts to define a level of dangerous anthropogenic interference (DAI) with the climate system are framed in terms of global annual mean surface temperature change, with 2°C above preindustrial being the most widely accepted climate policy ‘target’. Yet, no actual large-scale threshold (or ‘tipping point’) in the climate system (of which there are probably several) has been clearly linked to 2°C global warming. Of those that can be indirectly linked to global temperature change, the dangerous levels are necessarily imprecise and vary, with estimates ranging from ∼1°C above preindustrial upwards. Some potential thresholds cannot be meaningfully linked to global temperature change, others are sensitive to rates of climate change, and some are most sensitive to spatial gradients of climate change. In some cases, the heterogeneous distributions of reflective (sulfate) aerosols, absorbing (black carbon) aerosols, and land use could be more dangerous than changes in globally well-mixed greenhouse gases. Hence, the framing of Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC), in terms of stabilization of greenhouse gas concentrations (within a time frame), is too narrow to prevent some types of DAI. To address this, a reframed policy objective is proposed; to limit the overall magnitude, rate of change, and spatial gradients of anthropogenic radiative forcing, and resultant climate change, through restriction of emissions of anthropogenic aerosols, patterns of land use, and concentrations of short-lived, as well as long-lived, greenhouse gases.” Timothy M. Lenton, Wiley Interdisciplinary Reviews: Climate Change, 2011, DOI: 10.1002/wcc.107.

Another Greenland mass balance study supports recent studies

Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density – Sørensen et al. (2011) “ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet. Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries. We find annual mass loss estimates of the Greenland ice sheet in the range of 191 ± 23 Gt yr−1 to 240 ± 28 Gt yr−1 for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.” Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R., and Hvidberg, C. S., The Cryosphere, 5, 173-186, doi:10.5194/tc-5-173-2011, 2011. [full text]

Tropical clouds major factor for climate sensitivity in models

The role of low clouds in determining climate sensitivity in response to a doubling of CO2 as obtained from 16 mixed-layer models – Wetherald (2011) “The effects that low clouds in sub-tropical to tropical latitudes have in determining a given model’s climate sensitivity is investigated by analyzing the cloud data produced by 16 “slab” or mixed-layer models submitted to the PCMDI and CFMIP archives and their respective response to a doubling of CO2. It is found that, within the context of the 16 models analyzed, changes of these low clouds appear to play a major role in determining model sensitivity but with changes of middle cloud also contributing especially from middle to higher latitudes. It is noted that the models with the smallest overall cloud change produce the smallest climate sensitivities and vice versa although the overall signs of the respective cloud feedbacks are positive. It is also found that the amounts of low cloud as simulated by the respective control runs have very little correlation with their respective climate sensitivities. In general, the overall latitude-height patterns of cloud change as derived from these more recent experiments agree quite well with those obtained from much earlier studies which include increases of the highest cloud, decreases of cloud lower down in the middle and lower tropospheric and small increases of low clouds. Finally, other mitigating factors are mentioned which could also affect the spread of the resulting climate sensitivities.” Richard T. Wetherald, Climatic Change, DOI: 10.1007/s10584-011-0047-3.

Central European farmers face challenges as climate warms

Expected changes in agroclimatic conditions in Central Europe – Trnka et al. (2011) “During the past few decades, the basic assumption of agroclimatic zoning, i.e., that agroclimatic conditions remain relatively stable, has been shattered by ongoing climate change. The first aim of this study was to develop a tool that would allow for effective analysis of various agroclimatic indicators and their dynamics under climate change conditions for a particular region. The results of this effort were summarized in the AgriClim software package, which provides users with a wide range of parameters essential for the evaluation of climate-related stress factors in agricultural crop production. The software was then tested over an area of 114,000 km2 in Central Europe. We have found that by 2020, the combination of increased air temperature and changes in the amount and distribution of precipitation will lead to a prolonged growing season and significant shifts in the agroclimatic zones in Central Europe; in particular, the areas that are currently most productive will be reduced and replaced by warmer but drier conditions in the same time the higher elevations will most likely experience improvement in their agroclimatic conditions. This positive effect might be short-lived, as by 2050, even these areas might experience much drier conditions than observed currently. Both the rate and the scale of the shift are amazing as by 2020 (assuming upper range of the climate change projections) only 20–38% of agriculture land in the evaluated region will remain in the same agroclimatic and by 2050 it might be less than 2%. On the other hand farmers will be able to take advantage of an earlier start to the growing season, at least in the lowland areas, as the proportion of days suitable for sowing increases. As all of these changes might occur within less than four decades, these issues could pose serious adaptation challenges for farmers and governmental policies. The presented results also suggest that the rate of change might be so rapid that the concept of static agroclimatic zoning itself might lose relevance due to perpetual change.” Miroslav Trnka, Josef Eitzinger, Daniela Semerádová, Petr Hlavinka, Jan Balek, Martin Dubrovský, Gerhard Kubu, Petr Štěpánek, Sabina Thaler and Martin Možný, et al., Climatic Change, DOI: 10.1007/s10584-011-0025-9.

Anthropogenic burning makes Holcene forests different

Pre-glacial and interglacial pollen records over the last 3 Ma from northwest Canada: Why do Holocene forests differ from those of previous interglaciations? – Schweger et al. (2011) “We synthesize pollen spectra from eleven dated stratigraphic sections from central and northern Yukon. Palaeomagnetic and tephra dating indicates the earliest assemblages, representing closed canopy Pinus and Picea forest, are middle-late Pliocene age. More open forest conditions, indicated by increased Poaceae and with evidence of permafrost, are dated at ca 3 Ma. While Pinus pollen is abundant at 3 Ma, it is reduced in records after 2.6 Ma, and subsequent Pleistocene interglacial forest records are repeatedly dominated by Picea, along with Alnus and small but significant amounts of Abies. Surface sample comparisons indicate that Abies was more widespread and abundant in past interglaciations than at present and that Middle-Pleistocene Picea–Abies forest grew in the northern Yukon Porcupine Basin, 500 km beyond modern Abies limits. In contrast, Pinus, which occurs today in southern and central Yukon, was not a significant component of these Pleistocene interglacial forests. Late-Holocene pollen assemblages with rare Abies and high Pinus are the most distinct in the past 2.6 Ma. Possible factors driving Holocene difference are paleoclimate, paludification, changes in megafaunal herbivory and an unusual fire regime. Anthropogenic burning is a factor unique to the Holocene, and if it is shown to be important in this case, it would challenge our notion of what constitutes boreal wilderness.” Charles Schweger, Duane Froese, James M. White, and John A. Westgate, Quaternary Science Reviews, doi:10.1016/j.quascirev.2011.01.020.

Watching plants from space

First observations of global and seasonal terrestrial chlorophyll fluorescence from space – Joiner et al. (2011) “Remote sensing of terrestrial vegetation fluorescence from space is of interest because it can potentially provide global coverage of the functional status of vegetation. For example, fluorescence observations may provide a means to detect vegetation stress before chlorophyll reductions take place. Although there have been many measurements of fluorescence from ground- and airborne-based instruments, there has been scant information available from satellites. In this work, we use high-spectral resolution data from the Thermal And Near-infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT) that is in a sun-synchronous orbit with an equator crossing time near 13:00 LT. We use filling-in of the potassium (K) I solar Fraunhofer line near 770 nm to derive chlorophyll fluorescence and related parameters such as the fluorescence yield at that wavelength. We map these parameters globally for two months (July and December 2009) and show a full seasonal cycle for several different locations, including two in the Amazonia region. We also compare the derived fluorescence information with that provided by the MODIS Enhanced Vegetation Index (EVI). These comparisons show that for several areas these two indices exhibit different seasonality and/or relative intensity variations, and that changes in fluorescence frequently lead those seen in the EVI for those regions. The derived fluorescence therefore provides information that is related to, but independent of the reflectance.” Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M., Biogeosciences, 8, 637-651, doi:10.5194/bg-8-637-2011, 2011. [full text]

Barents Sea micro-fauna shows recent Arctic warming

Foraminiferal faunal evidence of twentieth-century Barents Sea warming – Wilson et al. (2011) “Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the ‘Little Ice Age’ is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century.An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.” L. J. Wilson, M. Hald, F. Godtliebsen, The Holocene March 7, 2011 0959683610385718, doi: 10.1177/0959683610385718.

Albedo decreasing changes expected in Siberian forests

Sensitivity of Siberian Larch forests to climate change – Shuman et al. (2011) “The Northern Hemisphere’s boreal forests, particularly the Siberian boreal forest, may have a strong effect on Earth’s climate through changes in dominant vegetation and associated regional surface albedo. We show that warmer climate will likely convert Siberia’s deciduous larch (Larix spp.) to evergreen conifer forests, and thus decrease regional surface albedo. The dynamic vegetation model, FAREAST, simulates Russian boreal forest composition and was used to explore the feedback between climate change and forest composition at continental, regional, and local scales. FAREAST was used to simulate the impact of changes in temperature and precipitation on total and genus-level biomass at sites across Siberia and the Russian Far East, and for six high and low diversity regions. Model runs with and without European Larch (Larix decidua) included in the available species pool were compared to assess the potential for this species, which is adapted to warmer climate conditions, to mitigate the effects of climate change, especially the shift to evergreen dominance. At the continental scale, when temperature is increased, larch-dominated sites become vulnerable to early replacement by evergreen conifers. At the regional and local scales, the diverse Amur region of the Russian Far East does not show a strong response to climate change, but the low diversity regions in central and southern Siberia have an abrupt vegetation shift from larch-dominated forest to evergreen-conifer forest in response to increased temperatures. The introduction of L. decidua prevents the collapse of larch in these low diversity areas and thus mitigates the response to warming. Using contemporary MODIS albedo measurements, we determined that a conversion from larch to evergreen stands in low diversity regions of southern Siberia would generate a local positive radiative forcing of 5.1±2.6 W m−2. This radiative heating would reinforce the warming projected to occur in the area under climate change.” Jacquelyn Kremper Shuman, Herman Henry Shugart, Thomas Liam O’Halloran, Global Change Biology, 2011, DOI: 10.1111/j.1365-2486.2011.02417.x.

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
Follow

Get every new post delivered to your Inbox.

Join 64 other followers

%d bloggers like this: