AGW Observer

Observations of anthropogenic global warming

Papers on ocean temperature

Posted by Ari Jokimäki on August 10, 2009

This is a list of papers on ocean temperatures. The list is not complete, and will most likely be updated in the future in order to make it more thorough and more representative.

UPDATE (January 2, 2020): Cheng et al. (2017), Cheng et al. (2016), Desbruyères et al. (2016), Gleckler et al. (2016), Lyman & Johnson (2014), Durack et al. (2014), Gleckler et al. (2012), and Pierce et al. (2012) added.
UPDATE (February 25, 2016): Abraham et al. (2013) added. Thanks to Tapani Linnaluoto for pointing it out. Also some dead links corrected.
UPDATE (September 24, 2012): Levitus et al. (2012) added. Thanks to Barry for pointing it out.
UPDATE (November 24, 2010): Lyman et al. (2010) added. Thanks to Anander for pointing it out, see the comment section below.
UPDATE (September 22, 2010): Roemmich & Gilson (2009) and Gregory et al. (2004) added.
UPDATE (September 12, 2010): Purkey & Johnson (2010) added.
UPDATE (April 24, 2010): Page updated. Some papers got new full text links and DiNezio & Goni (2010) was added.
UPDATE (November 19, 2009): Douglass & Knox (2009) added, thanks to Magnus W for pointing it out, see the comment section of “Papers on Earth’s radiation budget”.
UPDATE (October 11, 2009): von Schuckmann et al. (2009) and Church et al. (2009) added.

Improved estimates of ocean heat content from 1960 to 2015 – Cheng et al. (2017) [Full text]
Abstract: Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.
Citation: Lijing Cheng, Kevin E. Trenberth, John Fasullo, Tim Boyer, John Abraham, Jiang Zhu (2017). Science Advances 3(3):e1601545. DOI: 10.1126/sciadv.1601545.

Observed and simulated full-depth ocean heat-content changes for 1970–2005 – Cheng et al. (2016) [Full text]
Abstract: Greenhouse-gas emissions have created a planetary energy imbalance that is primarily manifested by increasing ocean heat content (OHC). Updated observational estimates of full-depth OHC change since 1970 are presented that account for recent advancements in reducing observation errors and biases. The full-depth OHC has increased by 0.74 [0.68, 0.80]  ×  1022 J yr−1 (0.46 Wm−2) and 1.22 [1.16–1.29]  ×  1022 J yr−1 (0.75 Wm−2) for 1970–2005 and 1992–2005, respectively, with a 5 to 95 % confidence interval of the median. The CMIP5 models show large spread in OHC changes, suggesting that some models are not state-of-the-art and require further improvements. However, the ensemble median has excellent agreement with our observational estimate: 0.68 [0.54–0.82]  ×  1022 J yr−1 (0.42 Wm−2) from 1970 to 2005 and 1.25 [1.10–1.41]  ×  1022 J yr−1 (0.77 Wm−2) from 1992 to 2005. These results increase confidence in both the observational and model estimates to quantify and study changes in Earth’s energy imbalance over the historical period. We suggest that OHC be a fundamental metric for climate model validation and evaluation, especially for forced changes (decadal timescales).
Citation: Cheng, L., Trenberth, K. E., Palmer, M. D., Zhu, J., and Abraham, J. P.: Observed and simulated full-depth ocean heat-content changes for 1970–2005, Ocean Sci., 12, 925–935, https://doi.org/10.5194/os-12-925-2016, 2016.

Industrial-era global ocean heat uptake doubles in recent decades – Gleckler et al. (2016) [Full text]
Abstract: Formal detection and attribution studies have used observations and climate models to identify an anthropogenic warming signature in the upper (0–700 m) ocean. Recently, as a result of the so-called surface warming hiatus, there has been considerable interest in global ocean heat content (OHC) changes in the deeper ocean, including natural and anthropogenically forced changes identified in observational, modelling and data re-analysis studies. Here, we examine OHC changes in the context of the Earth’s global energy budget since early in the industrial era (circa 1865–2015) for a range of depths. We rely on OHC change estimates from a diverse collection of measurement systems including data from the nineteenth-century Challenger expedition, a multi-decadal record of ship-based in situ mostly upper-ocean measurements, the more recent near-global Argo floats profiling to intermediate (2,000 m) depths, and full-depth repeated transoceanic sections. We show that the multi-model mean constructed from the current generation of historically forced climate models is consistent with the OHC changes from this diverse collection of observational systems. Our model-based analysis suggests that nearly half of the industrial-era increases in global OHC have occurred in recent decades, with over a third of the accumulated heat occurring below 700 m and steadily rising.
Citation: Gleckler, P., Durack, P., Stouffer, R. et al. Industrial-era global ocean heat uptake doubles in recent decades. Nature Clim Change 6, 394–398 (2016) doi:10.1038/nclimate2915.

Deep and abyssal ocean warming from 35 years of repeat hydrography – Desbruyères et al. (2016) [Full text]
Abstract: Global and regional ocean warming deeper than 2000 m is investigated using 35 years of sustained repeat hydrographic survey data starting in 1981. The global long‐term temperature trend below 2000 m, representing the time period 1991–2010, is equivalent to a mean heat flux of 0.065 ± 0.040 W m−2 applied over the Earth’s surface area. The strongest warming rates are found in the abyssal layer (4000–6000 m), which contributes to one third of the total heat uptake with the largest contribution from the Southern and Pacific Oceans. A similar regional pattern is found in the deep layer (2000–4000 m), which explains the remaining two thirds of the total heat uptake yet with larger uncertainties. The global average warming rate did not change within uncertainties pre‐2000 versus post‐2000, whereas ocean average warming rates decreased in the Pacific and Indian Oceans and increased in the Atlantic and Southern Oceans.
Citation: Desbruyères, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., and King, B. A. ( 2016), Deep and abyssal ocean warming from 35 years of repeat hydrography, Geophys. Res. Lett., 43, 10,356– 10,365, doi:10.1002/2016GL070413.

Estimating Global Ocean Heat Content Changes in the Upper 1800 m since 1950 and the Influence of Climatology Choice – Lyman & Johnson (2014) [Full text]
Abstract: Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.
Citation: Lyman, J.M. and G.C. Johnson, 2014: Estimating Global Ocean Heat Content Changes in the Upper 1800 m since 1950 and the Influence of Climatology Choice. J. Climate, 27, 1945–1957, https://doi.org/10.1175/JCLI-D-12-00752.1.

Quantifying underestimates of long-term upper-ocean warming – Durack et al. (2014) [Full text]
Abstract: The global ocean stores more than 90% of the heat associated with observed greenhouse-gas-attributed global warming. Using satellite altimetry observations and a large suite of climate models, we conclude that observed estimates of 0–700 dbar global ocean warming since 1970 are likely biased low. This underestimation is attributed to poor sampling of the Southern Hemisphere, and limitations of the analysis methods that conservatively estimate temperature changes in data-sparse regions. We find that the partitioning of northern and southern hemispheric simulated sea surface height changes are consistent with precise altimeter observations, whereas the hemispheric partitioning of simulated upper-ocean warming is inconsistent with observed in-situ-based ocean heat content estimates. Relying on the close correspondence between hemispheric-scale ocean heat content and steric changes, we adjust the poorly constrained Southern Hemisphere observed warming estimates so that hemispheric ratios are consistent with the broad range of modelled results. These adjustments yield large increases (2.2–7.1 × 1022 J 35 yr−1) to current global upper-ocean heat content change estimates, and have important implications for sea level, the planetary energy budget and climate sensitivity assessments.
Citation: P. J. Gleckler, B. D. Santer, C. M. Domingues, D. W. Pierce, T. P. Barnett, J. A. Church, K. E. Taylor, K. M. AchutaRao, T. P. Boyer, M. Ishii & P. M. Caldwell (2012). Nature Climate Change 2:524–529. doi:10.1038/nclimate1553.

A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change – Abraham et al. (2013)
Abstract: “The evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity-temperature-depth instruments used on Argo floats). A detailed discussion of the accuracy of these devices and a projection of the future of ocean temperature measurements are provided. The accuracy of ocean temperature measurements is discussed in detail in the context of ocean heat content, Earth’s energy imbalance, and thermosteric sea level rise. Up-to-date estimates are provided for these three important quantities. The total energy imbalance at the top of atmosphere is best assessed by taking an inventory of changes in energy storage. The main storage is in the ocean, the latest values of which are presented. Furthermore, despite differences in measurement methods and analysis techniques, multiple studies show that there has been a multidecadal increase in the heat content of both the upper and deep ocean regions, which reflects the impact of anthropogenic warming. With respect to sea level rise, mutually reinforcing information from tide gauges and radar altimetry shows that presently, sea level is rising at approximately 3 mm yr−1 with contributions from both thermal expansion and mass accumulation from ice melt. The latest data for thermal expansion sea level rise are included here and analyzed.”
Citation: Abraham, J. P., et al. (2013), A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys., 51, 450–483, doi:10.1002/rog.20022. [Full text]

World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 – Levitus et al. (2012) “We provide updated estimates of the change of ocean heat content and the thermosteric component of sea level change of the 0–700 and 0–2000 m layers of the World Ocean for 1955–2010. Our estimates are based on historical data not previously available, additional modern data, and bathythermograph data corrected for instrumental biases. We have also used Argo data corrected by the Argo DAC if available and used uncorrected Argo data if no corrections were available at the time we downloaded the Argo data. The heat content of the World Ocean for the 0–2000 m layer increased by 24.0 ± 1.9 × 1022 J (±2S.E.) corresponding to a rate of 0.39 W m−2 (per unit area of the World Ocean) and a volume mean warming of 0.09°C. This warming corresponds to a rate of 0.27 W m−2 per unit area of earth’s surface. The heat content of the World Ocean for the 0–700 m layer increased by 16.7 ± 1.6 × 1022 J corresponding to a rate of 0.27 W m−2 (per unit area of the World Ocean) and a volume mean warming of 0.18°C. The World Ocean accounts for approximately 93% of the warming of the earth system that has occurred since 1955. The 700–2000 m ocean layer accounted for approximately one-third of the warming of the 0–2000 m layer of the World Ocean. The thermosteric component of sea level trend was 0.54 ± .05 mm yr−1 for the 0–2000 m layer and 0.41 ± .04 mm yr−1 for the 0–700 m layer of the World Ocean for 1955–2010.” Levitus, S., et al. (2012), World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106. [Full text]

Human-induced global ocean warming on multidecadal timescales – Gleckler et al. (2012) [Full text]
Abstract: Large-scale increases in upper-ocean temperatures are evident in observational records. Several studies have used well-established detection and attribution methods to demonstrate that the observed basin-scale temperature changes are consistent with model responses to anthropogenic forcing and inconsistent with model-based estimates of natural variability. These studies relied on a single observational data set and employed results from only one or two models. Recent identification of systematic instrumental biases in expendable bathythermograph data has led to improved estimates of ocean temperature variability and trends and provide motivation to revisit earlier detection and attribution studies. We examine the causes of ocean warming using these improved observational estimates, together with results from a large multimodel archive of externally forced and unforced simulations. The time evolution of upper ocean temperature changes in the newer observational estimates is similar to that of the multimodel average of simulations that include the effects of volcanic eruptions. Our detection and attribution analysis systematically examines the sensitivity of results to a variety of model and data-processing choices. When global mean changes are included, we consistently obtain a positive identification (at the 1% significance level) of an anthropogenic fingerprint in observed upper-ocean temperature changes, thereby substantially strengthening existing detection and attribution evidence.
Citation: P. J. Gleckler, B. D. Santer, C. M. Domingues, D. W. Pierce, T. P. Barnett, J. A. Church, K. E. Taylor, K. M. AchutaRao, T. P. Boyer, M. Ishii & P. M. Caldwell (2012). Nature Climate Change 2:524–529. doi:10.1038/nclimate1553.

The fingerprint of human‐induced changes in the ocean’s salinity and temperature fields – Pierce et al. (2012) [Full text]
Abstract: The ocean’s salinity field is driven primarily by evaporation, precipitation, and river discharge, all key elements of the Earth’s hydrological cycle. Observations show the salinity field has been changing in recent decades. We perform a formal fingerprint‐based detection and attribution analysis of these changes between 1955–2004, 60°S and 60°N, and in the top 700 m of the water column. We find that observed changes are inconsistent with the effects of natural climate variability, either internal to the climate system (such as El Niño and the Pacific Decadal Oscillation) or external (solar fluctuations and volcanic eruptions). However, the observed changes are consistent with the changes expected due to human forcing of the climate system. Joint changes in salinity and temperature yield a stronger signal of human effects on climate than either salinity or temperature alone. When examining individual depth levels, observed salinity changes are unlikely (p < 0.05) to have arisen from natural causes over the top 125 m of the water column, while temperature changes (and joint salinity/temperature changes) are distinct from natural variability over the top 250 m.
Citation: Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D., and Durack, P. J. ( 2012), The fingerprint of human‐induced changes in the ocean’s salinity and temperature fields, Geophys. Res. Lett., 39, L21704, doi:10.1029/2012GL053389.

Robust warming of the global upper ocean – Lyman et al. (2010) “A large (~1023 J) multi-decadal globally averaged warming signal in the upper 300 m of the world’s oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth’s total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993–2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993–2008 of 0.64 W m-2 (calculated for the Earth’s entire surface area), with a 90-per-cent confidence interval of 0.53–0.75 W m-2.” John M. Lyman, Simon A. Good, Viktor V. Gouretski, Masayoshi Ishii, Gregory C. Johnson, Matthew D. Palmer, Doug M. Smith & Josh K. Willis, Nature 465, 334-337 (20 May 2010) | doi:10.1038/nature09043. [Full text]

Warming of Global Abyssal and Deep Southern Ocean Waters Between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets – Purkey & Johnson (2010) “We quantify abyssal global and deep Southern Ocean temperature trends between the 1990s and 2000s to assess the role of recent warming of these regions in global heat and sea level budgets. We compute warming rates with uncertainties along 28 full-depth, high-quality, hydrographic sections that have been occupied two or more times between 1980 and 2010. We divide the global ocean into 32 basins defined by the topography and climatological ocean bottom temperatures and estimate temperature trends in the 24 sampled basins. The three southernmost basins show a strong statistically significant abyssal warming trend, with that warming signal weakening to the north in the central Pacific, western Atlantic, and eastern Indian Oceans. Eastern Atlantic and western Indian Ocean basins show statistically insignificant abyssal cooling trends. Excepting the Arctic Ocean and Nordic seas, the rate of abyssal (below 4000 m) global ocean heat content change in the 1990s and 2000s is equivalent to a heat flux of 0.027 (±0.009) W m−2 applied over the entire surface of the Earth. Deep (1000–4000 m) warming south of the Sub-Antarctic Front of the Antarctic Circumpolar Current adds 0.068 (±0.062) W m−2. The abyssal warming produces a 0.053 (±0.017) mm yr−1 increase in global average sea level and the deep warming south of the Sub-Antarctic Front adds another 0.093 (±0.081) mm yr−1. Thus warming in these regions, ventilated primarily by Antarctic Bottom Water, accounts for a statistically significant fraction of the present global energy and sea level budgets.” Sarah G. Purkey and Gregory C. Johnson, Journal of Climate 2010, doi: 10.1175/2010JCLI3682.1. [Full text]

Identifying and Estimating Biases between XBT and Argo Observations Using Satellite Altimetry – DiNezio & Goni (2010) “A methodology is developed to identify and estimate systematic biases between expendable bathythermograph (XBT) and Argo observations using satellite altimetry. … The depth-dependent XBT-minus-Argo differences suggest a global positive bias of 3% of the XBT depths. The fact that this 3% error is robust among the different ocean basins provides evidence for changes in the instrumentation, such as changes in the terminal velocity of the XBTs. The value of this error is about the inverse of the correction to the XBT fall-rate equation (FRE) implemented in 1995, suggesting that this correction, while adequate during the 1990s, is no longer appropriate and could be the source of the 3% error. This result suggests that for 2000–07, the XBT dataset can be brought to consistency with Argo by using the original FRE coefficients without the 1995 correction.” [Full text]

The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program – Roemmich & Gilson (2009) “The Argo Program has achieved 5 years of global coverage, growing from a very sparse global array of 1000 profiling floats in early 2004 to more than 3000 instruments from late 2007 to the present. Using nearly 350,000 temperature and salinity profiles, we constructed an upper-ocean climatology and monthly anomaly fields for the 5-year era, 2004–2008. A basic description of the modern upper ocean based entirely on Argo data is presented here, to provide a baseline for comparison with past datasets and with ongoing Argo data, to test the adequacy of Argo sampling of large-scale variability, and to examine the consistency of the Argo dataset with related ocean observations from other programs. The Argo 5-year mean is compared to the World Ocean Atlas, highlighting the middle and high latitudes of the southern hemisphere as a region of strong multi-decadal warming and freshening. Moreover the region is one where Argo data have contributed an enormous increment to historical sampling, and where more Argo floats are needed for documenting large-scale variability. Globally, the Argo-era ocean is warmer than the historical climatology at nearly all depths, by an increasing amount toward the sea surface; it is saltier in the surface layer and fresher at intermediate levels. Annual cycles in temperature and salinity are compared, again to WOA01, and to the National Oceanography Center air–sea flux climatology, the Reynolds SST product, and AVISO satellite altimetric height. These products are consistent with Argo data on hemispheric and global scales, but show regional differences that may either point to systematic errors in the datasets or their syntheses, to physical processes, or to temporal variability. The present work is viewed as an initial step toward integrating Argo and other climate-relevant global ocean datasets.” Dean Roemmich, and John Gilson, Progress In Oceanography, Volume 82, Issue 2, August 2009, Pages 81-100, doi:10.1016/j.pocean.2009.03.004. [Full text]

Changes in global upper-ocean heat content over the last half century and comparison with climate models – Church et al. (2009) Apparently an update to Domingues et al. (2008). “Here, we present updates of our previous estimates of global upper ocean heat content annual anomalies from 1961 to 2008. These updates will allow for spatial and instrumental biases in the historical data base and include improved upper-ocean heat content estimates from recent Argo data.”

Global hydrographic variability patterns during 2003–2008 – von Schuckmann et al. (2009) “Monthly gridded global temperature and salinity fields from the near-surface layer down to 2000 m depth based on Argo measurements are used to analyze large-scale variability patterns on annual to interannual time scales during the years 2003–2008. … Global mean heat content and steric height changes are clearly associated with a positive trend during the 6 years of measurements.” [Full text]

Ocean heat content and Earth’s radiation imbalance – Douglass & Knox (2009) “Earth’s radiation imbalance is determined from ocean heat content data and compared with results of direct measurements. Distinct time intervals of alternating positive and negative values are found: 1960–mid-1970s (−0.15), mid-1970s–2000 (+0.15), 2001–present (−0.2 W/m2), and are consistent with prior reports. These climate shifts limit climate predictability.” [Full text]

Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems – Levitus et al. (2009) “We provide estimates of the warming of the world ocean for 1955–2008 based on historical data not previously available, additional modern data, correcting for instrumental biases of bathythermograph data, and correcting or excluding some Argo float data. The strong interdecadal variability of global ocean heat content reported previously by us is reduced in magnitude but the linear trend in ocean heat content remain similar to our earlier estimate.” Addresses also the issues raised by Gouretski & Koltermann (2007). [Full text]

Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections – Ishii & Kimoto (2009) “In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant.” [Full text]

Improved estimates of upper-ocean warming and multi-decadal sea-level rise – Domingues et al. (2008) “Our ocean warming and thermal expansion trends for 1961–2003 are about 50 per cent larger than earlier estimates but about 40 per cent smaller for 1993–2003, which is consistent with the recognition that previously estimated rates for the 1990s had a positive bias as a result of instrumental errors” [Full text]

In Situ Data Biases and Recent Ocean Heat Content Variability – Willis et al. (2008) “Two significant instrument biases have been identified in the in situ profile data used to estimate globally integrated upper-ocean heat content. A large cold bias was discovered in a small fraction of Argo floats along with a smaller but more prevalent warm bias in expendable bathythermograph (XBT) data. These biases appear to have caused the bulk of the upper-ocean cooling signal reported by Lyman et al. between 2003 and 2005.” [Full text]

How much is the ocean really warming? – Gouretski & Koltermann (2007) “Using bias-corrected XBT data we argue reduces the ocean heat content change since the 1950s by a factor of 0.62. Our estimate of the ocean heat content increase (0–3000 m) between 1957–66 and 1987–96 is 12.8·1022 J.” [Full text]

Simulated and observed variability in ocean temperature and heat content – AchutaRao et al. (2007) “For all major ocean basins, there was good agreement between the simulated and observed sampling distributions of OHC changes on 2-, 5-, and 10-year time scales (see SI Figs. 6–8). … Our analysis shows that the cooling found by Lyman et al. is spurious. At least five lines of evidence support this conclusion.” [Full text]

Isolating the signal of ocean global warming – Palmer et al. (2007) “We present a new analysis of millions of ocean temperature profiles designed to filter out local dynamical changes to give a more consistent view of the underlying warming. Time series of temperature anomaly for all waters warmer than 14°C show large reductions in interannual to inter-decadal variability and a more spatially uniform upper ocean warming trend (0.12 Wm−2 on average) than previous results.” [Full text]

Is the World Ocean Warming? Upper-Ocean Temperature Trends: 1950–2000 – Harrison & Carson (2007) “Where there are sufficient observations for this analysis, there is large spatial variability of 51-yr trends in the upper ocean, with some regions showing cooling in excess of 3°C, and others warming of similar magnitude.” [Full text]

Recent cooling of the upper ocean – Lyman et al. (2006) Reports an apparent cooling of the oceans after 2003, but later it turned out to be a problem in observations (See Willis et al., 2008 given above). [Full text]

Anthropogenic Warming of the Oceans: Observations and Model Results – Pierce et al. (2006) “Comparing the observations with results from two coupled ocean–atmosphere climate models [the Parallel Climate Model version 1 (PCM) and the Hadley Centre Coupled Climate Model version 3 (HadCM3)] that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming.” [Full text]

Penetration of Human-Induced Warming into the World’s Oceans – Barnett et al. (2005) “A warming signal has penetrated into the world’s oceans over the past 40 years. The signal is complex, with a vertical structure that varies widely by ocean; it cannot be explained by natural internal climate variability or solar and volcanic forcing, but is well simulated by two anthropogenically forced climate models.” [Full text]

Warming of the world ocean, 1955–2003 – Levitus et al. (2005) “During 1955–1998 world ocean heat content (0–3000 m) increased 14.5 x 1022 J corresponding to a mean temperature increase of 0.037°C at a rate of 0.20 Wm-2 (per unit area of Earth’s total surface area).” [Full text]

Simulated and observed decadal variability in ocean heat content – Gregory et al. (2004) “Previous analyses by Levitus et al. [2000] (“Levitus”) of ocean temperature data have shown that ocean heat content has increased over the last fifty years with substantial temporal variability superimposed. The HadCM3 coupled atmosphere–ocean general circulation model (AOGCM) simulates the Levitus trend if both natural and anthropogenic forcings are included. In the relatively well-observed northern hemisphere upper ocean, HadCM3 has similar temporal variability to Levitus but, like other AOGCMs, it has generally less variability than Levitus for the world ocean. We analyse the causes of this discrepancy, which could result from deficiencies in either the model or the observational dataset. A substantial contribution to the Levitus variability comes from a strong maximum around 500 m depth, absent in HadCM3. We demonstrate a possibly large sensitivity to the method of filling in the observational dataset outside the well-observed region, and advocate caution in using it to assess AOGCM heat content changes.” Gregory, J. M., H. T. Banks, P. A. Stott, J. A. Lowe, and M. D. Palmer (2004), Geophys. Res. Lett., 31, L15312, doi:10.1029/2004GL020258. [Full text]

Warming of the World Ocean – Levitus et al. (2000) “The heat content of the world ocean increased by ~2 × 1023 joules between the mid-1950s and mid-1990s, representing a volume mean warming of 0.06°C. This corresponds to a warming rate of 0.3 watt per meter squared (per unit area of Earth’s surface).” [Full text]

9 Responses to “Papers on ocean temperature”

  1. Ari Jokimäki said

    I added von Schuckmann et al. (2009) and Church et al. (2009). The latter is only a meeting abstract but I included it because it shows that there is an update coming to the Domingues et al. (2008). I’ll replace it with the actual paper once it has been published.

  2. Ari Jokimäki said

    I added Douglass & Knox (2009), see above.

  3. Ari Jokimäki said

    I updated this page. Some papers got new full text links and DiNezio & Goni (2010) was added.

  4. Ari Jokimäki said

    I added Roemmich & Gilson (2009).

  5. anander said

    Was this paper already covered in some another category? Could not find it.

    2010 Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. A. Smith, and J. K. Willis. 2010. Robust warming of the global upper ocean. Nature, 465, 334-337, doi:10.1038/nature09043.

    Nature
    http://www.nature.com/nature/journal/v465/n7296/full/nature09043.html

    Full text: http://www.indiaenvironmentportal.org.in/files/Robust%20warming%20of%20the%20global%20upper%20ocean.pdf

  6. Ari Jokimäki said

    It is here where it belongs. I added it. Thank you.

  7. barry said

    I copied my entry in the sea level page to here.

    We provide updated estimates of the change of ocean heat content and the thermosteric component of sea level change of the 0–700 and 0–2000 m layers of the World Ocean for 1955–2010. Our estimates are based on historical data not previously available, additional modern data, and bathythermograph data corrected for instrumental biases. We have also used Argo data corrected by the Argo DAC if available and used uncorrected Argo data if no corrections were available at the time we downloaded the Argo data. The heat content of the World Ocean for the 0–2000 m layer increased by 24.0 ± 1.9 × 1022 J (±2S.E.) corresponding to a rate of 0.39 W m−2 (per unit area of the World Ocean) and a volume mean warming of 0.09°C. This warming corresponds to a rate of 0.27 W m−2 per unit area of earth’s surface. The heat content of the World Ocean for the 0–700 m layer increased by 16.7 ± 1.6 × 1022 J corresponding to a rate of 0.27 W m−2 (per unit area of the World Ocean) and a volume mean warming of 0.18°C. The World Ocean accounts for approximately 93% of the warming of the earth system that has occurred since 1955. The 700–2000 m ocean layer accounted for approximately one-third of the warming of the 0–2000 m layer of the World Ocean. The thermosteric component of sea level trend was 0.54 ± .05 mm yr−1 for the 0–2000 m layer and 0.41 ± .04 mm yr−1 for the 0–700 m layer of the World Ocean for 1955–2010.

    World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 – Levitus et al 2012

    Full version

  8. Ari Jokimäki said

    I added it, thanks. 🙂

  9. Ari Jokimäki said

    Abraham et al. (2013) added. Thanks to Tapani Linnaluoto for pointing it out. Also some dead links corrected.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

 
%d bloggers like this: