AGW Observer

Observations of anthropogenic global warming

Papers on hurricanes and global warming

Posted by Ari Jokimäki on November 1, 2012

This is a list of papers on hurricanes and global warming. The list is not complete, and will most likely be updated in future in order to make it more thorough and more representative.

Update (September 2, 2019): Ting et al. (2019), Pant & Cha (2019), Trenberth et al. (2018), Lim et al. (2018), Emanuel (2017), Romero & Emanuel (2017), Dinan (2017), Estrada et al. (2015), Holland & Bruyère (2014), and Mann & Emanuel (2006) added. Kang & Elsner (2012), Knutson et al. (2010), Henderson-Sellers et al. (1998), and Holland (1997) removed because they were about tropical cyclones instead of being specifically about hurricanes. In the future, there might be a separate paper list on tropical cyclones in general.

Past and Future Hurricane Intensity Change along the U.S. East Coast – Ting et al. (2019) [FULL TEXT]
Abstract: The ocean and atmosphere in the North Atlantic are coupled through a feedback mechanism that excites a dipole pattern in vertical wind shear (VWS), a metric that strongly controls Atlantic hurricanes. In particular, when tropical VWS is under the weakening phase and thus favorable for increased hurricane activity in the Main Development Region (MDR), a protective barrier of high VWS inhibits hurricane intensification along the U.S. East Coast. Here we show that this pattern is driven mostly by natural decadal variability, but that greenhouse gas (GHG) forcing erodes the pattern and degrades the natural barrier along the U.S. coast. Twenty-first century climate model projections show that the increased VWS along the U.S. East Coast during decadal periods of enhanced hurricane activity is substantially reduced by GHG forcing, which allows hurricanes approaching the U.S. coast to intensify more rapidly. The erosion of this natural intensification barrier is especially large following the Representative Concentration Pathway 8.5 (rcp8.5) emission scenario.
Citation: Mingfang Ting, James P. Kossin, Suzana J. Camargo, Cuihua Li (2019). Scientific Reportsvolume 9, Article number: 7795. https://doi.org/10.1038/s41598-019-44252-w.

Potential changes in hurricane risk profile across the United States coastal regions under climate change scenarios – Pant & Cha (2019)
Abstract: Hurricane risk varies widely across the different regions of the United States. The spatial variation of the risk could be further impacted by future climate scenarios and the consideration of impact of climate change on future regional hurricane risk is necessary for long-term planning of built infrastructure. Therefore, climate-dependent hurricane risks across eight different locations of the US south and east coast are investigated in this study. To obtain a comprehensive understanding of the nature of the risks, hurricane risk is assessed using three different metrics, including wind speed, annual individual building loss ratio, and regional loss, each of which can provide valuable insight for different risk management context. For all the locations, future hurricane risk is found to be higher than present, though the degree of increase differs by the location and the metric used.
Citation: Sami Pant, Eun Jeong Cha ( 2019). Structural Safety 80(September 2019):56-65. https://doi.org/10.1016/j.strusafe.2019.05.003.

Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation – Trenberth et al. (2018) [FULL TEXT]
Abstract: While hurricanes occur naturally, human‐caused climate change is supercharging them and exacerbating the risk of major damage. Here using ocean and atmosphere observations, we demonstrate links between increased upper ocean heat content due to global warming with the extreme rainfalls from recent hurricanes. Hurricane Harvey provides an excellent case study as it was isolated in space and time. We show that prior to the beginning of northern summer of 2017, ocean heat content was the highest on record both globally and in the Gulf of Mexico, but the latter sharply decreased with hurricane Harvey via ocean evaporative cooling. The lost ocean heat was realized in the atmosphere as moisture, and then as latent heat in record‐breaking heavy rainfalls. Accordingly, record high ocean heat values not only increased the fuel available to sustain and intensify Harvey but also increased its flooding rains on land. Harvey could not have produced so much rain without human‐induced climate change. Results have implications for the role of hurricanes in climate. Proactive planning for the consequences of human‐caused climate change is not happening in many vulnerable areas, making the disasters much worse.
Citation: Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., & Fasullo, J. ( 2018). Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730– 744. https://doi.org/10.1029/2018EF000825.

The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season – Lim et al. (2018) [FULL TEXT]
Abstract: The 2017 Atlantic hurricane season was extremely active with six major hurricanes, the third most on record. The sea-surface temperatures (SSTs) over the eastern Main Development Region (EMDR), where many tropical cyclones (TCs) developed during active months of August/September, were ~0.96 °C above the 1901–2017 average (warmest on record): about ~0.42 °C from a long-term upward trend and the rest (~80%) attributed to the Atlantic Meridional Mode (AMM). The contribution to the SST from the North Atlantic Oscillation (NAO) over the EMDR was a weak warming, while that from El Niño–Southern Oscillation (ENSO) was negligible. Nevertheless, ENSO, the NAO, and the AMM all contributed to favorable wind shear conditions, while the AMM also produced enhanced atmospheric instability. Compared with the strong hurricane years of 2005/2010, the ocean heat content (OHC) during 2017 was larger across the tropics, with higher SST anomalies over the EMDR and Caribbean Sea. On the other hand, the dynamical/thermodynamical atmospheric conditions, while favorable for enhanced TC activity, were less prominent than in 2005/2010 across the tropics. The results suggest that unusually warm SST in the EMDR together with the long fetch of the resulting storms in the presence of record-breaking OHC may be key factors in driving the strong TC activity in 2017.
Citation: Young-Kwon Lim, Siegfried D. Schubert, Robin Kovach, Andrea M. Molod, Steven Pawson (2018). Scientific Reports 8, Article number: 16172. https://doi.org/10.1038/s41598-018-34343-5.

Assessing the present and future probability of Hurricane Harvey’s rainfall – Emanuel (2017) [FULL TEXT]
Abstract: We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey’s magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.
Citation: Kerry Emanuel (2017). PNAS 114(48):12681-12684. https://doi.org/10.1073/pnas.1716222114.

Climate Change and Hurricane-Like Extratropical Cyclones: Projections for North Atlantic Polar Lows and Medicanes Based on CMIP5 Models – Romero & Emanuel (2017) [FULL TEXT]
Abstract: A novel statistical–deterministic method is applied to generate thousands of synthetic tracks of North Atlantic (NA) polar lows and Mediterranean hurricanes (“medicanes”); these synthetic storms are compatible with the climates simulated by 30 CMIP5 models in both historical and RCP8.5 simulations for a recent (1986–2005) and a future (2081–2100) period, respectively. Present-to-future multimodel mean changes in storm risk are analyzed, with special attention to robust patterns (in terms of consensus among individual models) and privileging in each case the subset of models exhibiting the highest agreement with the results yielded by two reanalyses. A reduction of about 10%–15% in the overall frequency of NA polar lows that would uniformly affect the full spectrum of storm intensities is expected. In addition, a very robust regional redistribution of cases is obtained, namely a tendency to shift part of the polar low activity from the south Greenland–Icelandic sector toward the Nordic seas closer to Scandinavia. In contrast, the future change in the number of medicanes is unclear (on average the total frequency of storms does not vary), but a profound reshaping of the spectrum of lifetime maximum winds is found; the results project a higher number of moderate and violent medicanes at the expense of weak storms. Spatially, the method projects an increased occurrence of medicanes in the western Mediterranean and Black Sea that is balanced by a reduction of storm tracks in contiguous areas, particularly in the central Mediterranean; however, future extreme events (winds > 60 kt; 1 kt = 0.51 m s−1) become more probable in all Mediterranean subbasins.
Citation: Romero, R. and K. Emanuel, 2017: Climate Change and Hurricane-Like Extratropical Cyclones: Projections for North Atlantic Polar Lows and Medicanes Based on CMIP5 Models. J. Climate, 30, 279–299, https://doi.org/10.1175/JCLI-D-16-0255.1.

Projected Increases in Hurricane Damage in the United States: The Role of Climate Change and Coastal Development – Dinan (2017) [FULL TEXT]
Abstract: The combined forces of climate change and coastal development are anticipated to increase hurricane damage around the globe. Estimating the magnitude of those increases is challenging due to substantial uncertainties about the amount by which climate change will alter the formation of hurricanes and increase sea levels in various locations; and the fact that future increases in property exposure are uncertain, reflecting local, regional and national trends as well as unforeseen circumstances. This paper assesses the potential increase in wind and storm surge damage caused by hurricanes making landfall in the U.S. between now and 2075 using a framework that addresses those challenges. We find that, in combination, climate change and coastal development will cause hurricane damage to increase faster than the U.S. economy is expected to grow. In addition, we find that the number of people facing substantial expected damage will, on average, increase more than eight-fold over the next 60 years. Understanding the concentration of damage may be particularly important in countries that lack policies or programs to provide federal support to hard-hit localities.
Citation: Terry Dinan (2017). Ecological Economics 138(August 2017):186-198. doi: https://doi.org/10.1016/j.ecolecon.2017.03.034.

Economic losses from US hurricanes consistent with an influence from climate change – Estrada et al. (2015)
Abstract: Warming of the climate system and its impacts on biophysical and human systems have been widely documented. The frequency and intensity of extreme weather events have also changed, but the observed increases in natural disaster losses are often thought to result solely from societal change, such as increases in exposure and vulnerability. Here we analyse the economic losses from tropical cyclones in the United States, using a regression-based approach instead of a standard normalization procedure to changes in exposure and vulnerability, to minimize the chance of introducing a spurious trend. Unlike previous studies, we use statistical models to estimate the contributions of socioeconomic factors to the observed trend in losses and we account for non-normal and nonlinear characteristics of loss data. We identify an upward trend in economic losses between 1900 and 2005 that cannot be explained by commonly used socioeconomic variables. Based on records of geophysical data, we identify an upward trend in both the number and intensity of hurricanes in the North Atlantic basin as well as in the number of loss-generating tropical cyclone records in the United States that is consistent with the smoothed global average rise in surface air temperature. We estimate that, in 2005, US$2 to US$14 billion of the recorded annual losses could be attributable to climate change, 2 to 12% of that year’s normalized losses. We suggest that damages from tropical cyclones cannot be dismissed when evaluating the current and future costs of climate change and the expected benefits of mitigation and adaptation strategies.
Citation: Francisco Estrada, W. J. Wouter Botzen, Richard S. J. Tol (2015). Nature Geoscience volume 8, pages 880–884. DOI: https://doi.org/10.1038/ngeo2560.

Recent intense hurricane response to global climate change – Holland & Bruyère (2014) [FULL TEXT]
Abstract: An Anthropogenic Climate Change Index (ACCI) is developed and used to investigate the potential global warming contribution to current tropical cyclone activity. The ACCI is defined as the difference between the means of ensembles of climate simulations with and without anthropogenic gases and aerosols. This index indicates that the bulk of the current anthropogenic warming has occurred in the past four decades, which enables improved confidence in assessing hurricane changes as it removes many of the data issues from previous eras. We find no anthropogenic signal in annual global tropical cyclone or hurricane frequencies. But a strong signal is found in proportions of both weaker and stronger hurricanes: the proportion of Category 4 and 5 hurricanes has increased at a rate of ~25–30 % per °C of global warming after accounting for analysis and observing system changes. This has been balanced by a similar decrease in Category 1 and 2 hurricane proportions, leading to development of a distinctly bimodal intensity distribution, with the secondary maximum at Category 4 hurricanes. This global signal is reproduced in all ocean basins. The observed increase in Category 4–5 hurricanes may not continue at the same rate with future global warming. The analysis suggests that following an initial climate increase in intense hurricane proportions a saturation level will be reached beyond which any further global warming will have little effect.
Citation: Greg Holland, Cindy L. Bruyère (2014). Climate Dynamics 42(3–4):617–627. DOI: https://doi.org/10.1007/s00382-013-1713-0.

Homogeneous record of Atlantic hurricane surge threat since 1923 – Grinsted et al. (2012) “Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here we construct an independent record of Atlantic tropical cyclone activity on the basis of storm surge statistics from tide gauges. We demonstrate that the major events in our surge index record can be attributed to landfalling tropical cyclones; these events also correspond with the most economically damaging Atlantic cyclones. We find that warm years in general were more active in all cyclone size ranges than cold years. The largest cyclones are most affected by warmer conditions and we detect a statistically significant trend in the frequency of large surge events (roughly corresponding to tropical storm size) since 1923. In particular, we estimate that Katrina-magnitude events have been twice as frequent in warm years compared with cold years (P < 0.02)." Aslak Grinsted, John C. Moore, and Svetlana Jevrejeva, PNAS October 15, 2012, doi: 10.1073/pnas.1209542109. [FULL TEXT]

Physically based assessment of hurricane surge threat under climate change – Lin et al. (2012) “Storm surges are responsible for much of the damage and loss of life associated with landfalling hurricanes. Understanding how global warming will affect hurricane surges thus holds great interest. As general circulation models (GCMs) cannot simulate hurricane surges directly, we couple a GCM-driven hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under projected climates and assess surge threat, as an example, for New York City (NYC). Struck by many intense hurricanes in recorded history and prehistory, NYC is highly vulnerable to storm surges. We show that the change of storm climatology will probably increase the surge risk for NYC; results based on two GCMs show the distribution of surge levels shifting to higher values by a magnitude comparable to the projected sea-level rise (SLR). The combined effects of storm climatology change and a 1 m SLR may cause the present NYC 100-yr surge flooding to occur every 3–20 yr and the present 500-yr flooding to occur every 25–240 yr by the end of the century.” Ning Lin, Kerry Emanuel, Michael Oppenheimer & Erik Vanmarcke, Nature Climate Change 2, 462–467(2012), doi:10.1038/nclimate1389. [FULL TEXT]

Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations – Emanuel et al. (2011) “Changes in tropical cyclone activity are among the more potentially consequential results of global climate change, and it is therefore of considerable interest to understand how anthropogenic climate change may affect such storms. Global climate models are currently used to estimate future climate change, but the current generation of models lacks the horizontal resolution necessary to resolve the intense inner core of tropical cyclones. Here we review a new technique for inferring tropical cyclone climatology from the output of global models, extend it to predict genesis climatologies (rather than relying on historical climatology), and apply it to current and future climate states simulated by a suite of global models developed in support of the most recent Intergovernmental Panel on Climate Change report. This new technique attacks the horizontal resolution problem by using a specialized, coupled ocean–atmosphere hurricane model phrased in angular momentum coordinates, which provide a high resolution of the core at low cost. This model is run along each of 2,000 storm tracks generated using an advection-and-beta model, which is, in turn, driven by large-scale winds derived from the global models. In an extension to this method, tracks are initiated by randomly seeding large areas of the tropics with weak vortices and then allowing the intensity model to determine their survival, based on large-scale environmental conditions. We show that this method is largely successful in reproducing the observed seasonal cycle and interannual variability of tropical cyclones in the present climate, and that it is more modestly successful in simulating their spatial distribution. When applied to simulations of global climate with double the present concentration of carbon dioxide, this method predicts substantial changes and geographic shifts in tropical cyclone activity, but with much variation among the global climate models used. Basinwide power dissipation and storm intensity generally increase with global warming, but the results vary from model to model and from basin to basin. Storm frequency decreases in the Southern Hemisphere and north Indian Ocean, increases in the western North Pacific, and is indeterminate elsewhere. We demonstrate that in these simulations, the change in tropical cyclone activity is greatly influenced by the increasing difference between the moist entropy of the boundary layer and that of the middle troposphere as the climate warms.” Emanuel, Kerry, Ragoth Sundararajan, John Williams, 2008: Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations. Bull. Amer. Meteor. Soc., 89, 347–367. doi: http://dx.doi.org/10.1175/BAMS-89-3-347. [FULL TEXT]

Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices – Villarini et al. (2010) “The authors analyze and model time series of annual counts of tropical storms lasting more than 2 days in the North Atlantic basin and U.S. landfalling tropical storms over the period 1878–2008 in relation to different climate indices. The climate indices considered are the tropical Atlantic sea surface temperature (SST), tropical mean SST, the North Atlantic Oscillation (NAO), and the Southern Oscillation index (SOI). Given the uncertainties associated with a possible tropical storm undercount in the presatellite era, two different time series of counts for the North Atlantic basin are employed: one is the original (uncorrected) tropical storm record maintained by the National Hurricane Center and the other one is with a correction for the estimated undercount associated with a changing observation network. Two different SST time series are considered: the Met Office’s HadISSTv1 and NOAA’s Extended Reconstructed SST. Given the nature of the data (counts), a Poisson regression model is adopted. The selection of statistically significant covariates is performed by penalizing models for adding extra parameters and two penalty functions are used. Depending on the penalty function, slightly different models, both in terms of covariates and dependence of the model’s parameter, are obtained, showing that there is not a “single best” model. Moreover, results are sensitive to the undercount correction and the SST time series. Suggestions concerning the model to use are provided, driven by both the outcomes of the statistical analyses and the current understanding of the underlying physical processes responsible for the genesis, development, and tracks of tropical storms in the North Atlantic basin. Although no single model is unequivocally superior to the others, the authors suggest a very parsimonious family of models using as covariates tropical Atlantic and tropical mean SSTs.” Villarini, Gabriele, Gabriel A. Vecchi, James A. Smith, 2010: Modeling the Dependence of Tropical Storm Counts in the North Atlantic Basin on Climate Indices. Mon. Wea. Rev., 138, 2681–2705. doi: http://dx.doi.org/10.1175/2010MWR3315.1. [FULL TEXT]

Atlantic hurricanes and climate over the past 1,500 years – Mann et al. (2009) “Atlantic tropical cyclone activity, as measured by annual storm counts, reached anomalous levels over the past decade1. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise. Here we place recent activity in a longer-term context by comparing two independent estimates of tropical cyclone activity over the past 1,500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate uses a previously published statistical model of Atlantic tropical cyclone activity driven by proxy reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic tropical cyclone activity during medieval times (around ad 1000) followed by a subsequent lull in activity. The statistical model indicates that the medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results from the reinforcing effects of La-Niña-like climate conditions and relative tropical Atlantic warmth.” Michael E. Mann, Jonathan D. Woodruff, Jeffrey P. Donnelly & Zhihua Zhang, Nature 460, 880-883 (13 August 2009) | doi:10.1038/nature08219. [FULL TEXT]

Gulf Stream and ENSO Increase the Temperature Sensitivity of Atlantic Tropical Cyclones – Moore et al. (2008) “Controversy exists over the role of the recent rise in sea surface temperatures (SST) and the frequency of tropical cyclones or hurricanes. Here, 135 yr of observational records are used to demonstrate how sea surface temperature, sea level pressure, and cyclone numbers are linked. A novel wavelet-lag coherence method is used to study cause and effect relations over a large space of time scales, phase lags, and periods. It is found that SST and cyclones are not merely correlated, but are in a negative feedback loop, where rising SST causes increased numbers of cyclones, which reduce SST. This is statistically most significant at decadal and not at longer periods, which is contrary to expectations if long-period natural cycles are important in driving cyclone numbers. Spatial relationships are examined using phase-aware teleconnections, which at the dominant decadal period show the in-phase behavior of the Atlantic SST in the Gulf Stream region, reflecting the role of the transportion of heat northward from the tropical Atlantic. At 5-yr periods there is significant coherence when SST leads cyclones by 2 yr, and this is associated with tropical ENSO activity such that, as predicted, increasing numbers of El Niños cause fewer Atlantic cyclones. The pattern of coherence existing since 1970 strongly favors the decadal coherence band, and despite growing coherence at higher frequencies, there is none at the 5-yr band, perhaps explaining why the observed sensitivity between SST and cyclones is larger than that from general circulation model (GCM) predictions and becoming greater.” Moore, J. C., A. Grinsted, S. Jevrejeva, 2008: Gulf Stream and ENSO Increase the Temperature Sensitivity of Atlantic Tropical Cyclones. J. Climate, 21, 1523–1531. doi: http://dx.doi.org/10.1175/2007JCLI1752.1. [FULL TEXT]

Whither Hurricane Activity? – Vecchi et al. (2008) “Alternative interpretations of the relationship between sea surface temperature and hurricane activity imply vastly different future Atlantic hurricane activity.” Gabriel A. Vecchi, Kyle L. Swanson and Brian J. Soden, Science 31 October 2008: Vol. 322 no. 5902 pp. 687-689, DOI: 10.1126/science.1164396. [FULL TEXT]

Counting Atlantic tropical cyclones back to 1900 – Landsea (2007) “Climate variability and any resulting change in the characteristics of tropical cyclones (tropical storms, subtropical storms, and hurricanes) have become topics of great interest and research within the past 2 years [International Workshop on Tropical Cyclones, 2006].An emerging focus is how the frequency of tropical cyclones has changed over time and whether any changes could be linked to anthropogenic global warming.” Landsea, C. (2007), Counting Atlantic tropical cyclones back to 1900, Eos Trans. AGU, 88(18), 197, doi:10.1029/2007EO180001. [FULL TEXT]

Atlantic hurricane trends linked to climate change – Mann & Emanuel (2006) [FULL TEXT]
Abstract: Increases in key measures of Atlantic hurricane activity over recent decades are believed to reflect, in large part, contemporaneous increases in tropical Atlantic warmth [e.g., Emanuel, 2005]. Some recent studies [e.g., Goldenberg et al., 2001] have attributed these increases to a natural climate cycle termed the Atlantic Multidecadal Oscillation (AMO), while other studies suggest that climate change may instead be playing the dominant role [Emanuel, 2005; Webster et al., 2005]. Using a formal statistical analysis to separate the estimated influences of anthropogenic climate change from possible natural cyclical influences, this article presents results indicating that anthropogenic factors are likely responsible for long‐term trends in tropical Atlantic warmth and tropical cyclone activity. In addition, this analysis indicates that late twentieth century tropospheric aerosol cooling has offset a substantial fraction of anthropogenic warming in the region and has thus likely suppressed even greater potential increases in tropical cyclone activity.
Citation: Mann, M. E., and Emanuel, K. A. ( 2006), Atlantic hurricane trends linked to climate change, Eos Trans. AGU, 87( 24), 233– 241, doi:10.1029/2006EO240001.

Estimated return periods for Hurricane Katrina – Elsner et al. (2006) “Hurricane Katrina is one of the most destructive natural disaster in U.S. history. The infrequency of severe coastal hurricanes implies that empirical probability estimates of the next big one will be unreliable. Here we use an extreme-value model together with interpolated best-track (HURDAT) records to show that a hurricane of Katrina’s intensity or stronger can be expected to occur, on average, once every 21 years somewhere along the Gulf coast from Texas through Alabama and once every 14 years somewhere along the entire coast from Texas through Maine. The model predicts a 100-year return level of 83 ms−1 (186 mph) during globally warm years and 75 ms−1 (168 mph) during globally cool years. This difference is consistent with models predicting an increase in hurricane intensity with increasing greenhouse warming.” Elsner, J. B., T. H. Jagger, and A. A. Tsonis (2006), Estimated return periods for Hurricane Katrina, Geophys. Res. Lett., 33, L08704, doi:10.1029/2005GL025452. [FULL TEXT]

Climatology Models for Extreme Hurricane Winds near the United States – Jagger & Elsner (2006) “The rarity of severe coastal hurricanes implies that empirical estimates of extreme wind speed return levels will be unreliable. Here climatology models derived from extreme value theory are estimated using data from the best-track [Hurricane Database (HURDAT)] record. The occurrence of a hurricane above a specified threshold intensity level is assumed to follow a Poisson distribution, and the distribution of the maximum wind is assumed to follow a generalized Pareto distribution. The likelihood function is the product of the generalized Pareto probabilities for each wind speed estimate. A geographic region encompassing the entire U.S. coast vulnerable to Atlantic hurricanes is of primary interest, but the Gulf Coast, Florida, and the East Coast regions are also considered. Model parameters are first estimated using a maximum likelihood (ML) procedure. Results estimate the 100-yr return level for the entire coast at 157 kt (±10 kt), but at 117 kt (±4 kt) for the East Coast region (1 kt = 0.514 m s−1). Highest wind speed return levels are noted along the Gulf Coast from Texas to Alabama. The study also examines how the extreme wind return levels change depending on climate conditions including El Niño–Southern Oscillation, the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and global temperature. The mean 5-yr return level during La Niña (El Niño) conditions is 125 (116) kt, but is 140 (164) kt for the 100-yr return level. This indicates that La Niña years are the most active for the occurrence of strong hurricanes, but that extreme hurricanes are more likely during El Niño years. Although El Niño inhibits hurricane formation in part through wind shear, the accompanying cooler lower stratosphere appears to increase the potential intensity of hurricanes that do form. To take advantage of older, less reliable data, the models are reformulated using Bayesian methods. Gibbs sampling is used to integrate the prior over the likelihood to obtain the posterior distributions for the model parameters conditional on global temperature. Higher temperatures are conditionally associated with more strong hurricanes and higher return levels for the strongest hurricane winds. Results compare favorably with an ML approach as well as with recent modeling and observational studies. The maximum possible near-coastal wind speed is estimated to be 208 kt (183 kt) using the Bayesian (ML) approach.” Jagger, Thomas H., James B. Elsner, 2006: Climatology Models for Extreme Hurricane Winds near the United States. J. Climate, 19, 3220–3236. doi: http://dx.doi.org/10.1175/JCLI3913.1. [FULL TEXT]

Increasing destructiveness of tropical cyclones over the past 30 years – Emanuel (2005) “Theory and modelling predict that hurricane intensity should increase with increasing global mean temperatures, but work on the detection of trends in hurricane activity has focused mostly on their frequency and shows no trend. Here I define an index of the potential destructiveness of hurricanes based on the total dissipation of power, integrated over the lifetime of the cyclone, and show that this index has increased markedly since the mid-1970s. This trend is due to both longer storm lifetimes and greater storm intensities. I find that the record of net hurricane power dissipation is highly correlated with tropical sea surface temperature, reflecting well-documented climate signals, including multi-decadal oscillations in the North Atlantic and North Pacific, and global warming. My results suggest that future warming may lead to an upward trend in tropical cyclone destructive potential, and—taking into account an increasing coastal population—a substantial increase in hurricane-related losses in the twenty-first century.” Kerry Emanuel, Nature 436, 686-688 (4 August 2005), doi:10.1038/nature03906. [FULL TEXT, Landsea comment, Emanuel reply]

Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization – Knutson & Tuleya (2004) “Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s−1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments— atmospheric temperature and moisture profiles and SSTs—are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% yr−1 CO2 increase experiments, range from about +0.8° to +2.4°C in the three tropical storm basins studied. Four different moist convection parameterizations are tested in the hurricane model, including the use of no convective parameterization in the highest resolution inner grid. Nearly all combinations of climate model boundary conditions and hurricane model convection schemes show a CO2-induced increase in both storm intensity and near-storm precipitation rates. The aggregate results, averaged across all experiments, indicate a 14% increase in central pressure fall, a 6% increase in maximum surface wind speed, and an 18% increase in average precipitation rate within 100 km of the storm center. The fractional change in precipitation is more sensitive to the choice of convective parameterization than is the fractional change of intensity. Current hurricane potential intensity theories, applied to the climate model environments, yield an average increase of intensity (pressure fall) of 8% (Emanuel) to 16% (Holland) for the high-CO2 environments. Convective available potential energy (CAPE) is 21% higher on average in the high-CO2 environments. One implication of the results is that if the frequency of tropical cyclones remains the same over the coming century, a greenhouse gas–induced warming may lead to a gradually increasing risk in the occurrence of highly destructive category-5 storms.” Knutson, Thomas R., Robert E. Tuleya, 2004: Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization. J. Climate, 17, 3477–3495. doi: http://dx.doi.org/10.1175/1520-0442(2004)0172.0.CO;2. [FULL TEXT]

Impact of CO2-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling – Knutson et al. (2001) “This study explores how a carbon dioxide (CO2) warming–induced enhancement of hurricane intensity could be altered by the inclusion of hurricane–ocean coupling. Simulations are performed using a coupled version of the Geophysical Fluid Dynamics Laboratory hurricane prediction system in an idealized setting with highly simplified background flow fields. The large-scale atmospheric boundary conditions for these high-resolution experiments (atmospheric temperature and moisture profiles and SSTs) are derived from control and high-CO2 climatologies obtained from a low-resolution (R30) global coupled ocean–atmosphere climate model. The high-CO2 conditions are obtained from years 71–120 of a transient +1% yr−1 CO2-increase experiment with the global model. The CO2-induced SST changes from the global climate model range from +2.2° to +2.7°C in the six tropical storm basins studied. In the storm simulations, ocean coupling significantly reduces the intensity of simulated tropical cyclones, in accord with previous studies. However, the net impact of ocean coupling on the simulated CO2 warming–induced intensification of tropical cyclones is relatively minor. For both coupled and uncoupled simulations, the percentage increase in maximum surface wind speeds averages about 5%–6% over the six basins and varies from about 3% to 10% across the different basins. Both coupled and uncoupled simulations also show strong increases of near-storm precipitation under high-CO2 climate conditions, relative to control (present day) conditions.” Knutson, Thomas R., Robert E. Tuleya, Weixing Shen, Isaac Ginis, 2001: Impact of CO2-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling. J. Climate, 14, 2458–2468. doi: http://dx.doi.org/10.1175/1520-0442(2001)0142.0.CO;2. [FULL TEXT]

The Recent Increase in Atlantic Hurricane Activity: Causes and Implications – Goldenberg et al. (2001) “The years 1995 to 2000 experienced the highest level of North Atlantic hurricane activity in the reliable record. Compared with the generally low activity of the previous 24 years (1971 to 1994), the past 6 years have seen a doubling of overall activity for the whole basin, a 2.5-fold increase in major hurricanes (≥50 meters per second), and a fivefold increase in hurricanes affecting the Caribbean. The greater activity results from simultaneous increases in North Atlantic sea-surface temperatures and decreases in vertical wind shear. Because these changes exhibit a multidecadal time scale, the present high level of hurricane activity is likely to persist for an additional ∼10 to 40 years. The shift in climate calls for a reevaluation of preparedness and mitigation strategies.” Stanley B. Goldenberg, Christopher W. Landsea, Alberto M. Mestas-Nuñez, William M. Gray, Science 20 July 2001: Vol. 293 no. 5529 pp. 474-479, DOI: 10.1126/science.1060040. [FULL TEXT]

Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system – Knutson & Tuleya (1999) “The impact of CO2-induced global warming on the intensities of strong hurricanes is investigated using the GFDL regional high-resolution hurricane prediction system. The large-scale initial conditions and boundary conditions for the regional model experiments, including SSTs, are derived from control and transient CO2 increase experiments with the GFDL R30-resolution global coupled climate model. In a case study approach, 51 northwest Pacific storm cases derived from the global model under present-day climate conditions are simulated with the regional model, along with 51 storm cases for high CO2 conditions. For each case, the regional model is integrated forward for five days without ocean coupling. The high CO2 storms, with SSTs warmer by about 2.2 °C on average and higher environmental convective available potential energy (CAPE), are more intense than the control storms by about 3–7 m/s (5%–11%) for surface wind speed and 7 to 24 hPa for central surface pressure. The simulated intensity increases are statistically significant according to most of the statistical tests conducted and are robust to changes in storm initialization methods. Near-storm precipitation is 28% greater in the high CO2 sample. In terms of storm tracks, the high CO2 sample is quite similar to the control. The mean radius of hurricane force winds is 2 to 3% greater for the composite high CO2 storm than for the control, and the high CO2 storms penetrate slightly higher into the upper troposphere. More idealized experiments were also performed in which an initial storm disturbance was embedded in highly simplified flow fields using time mean temperature and moisture conditions from the global climate model. These idealized experiments support the case study results and suggest that, in terms of thermodynamic influences, the results for the NW Pacific basin are qualitatively applicable to other tropical storm basins.” T. R. Knutson, R. E. Tuleya, Climate Dynamics, July 1999, Volume 15, Issue 7, pp 503-519. [FULL TEXT]

Simulated Increase of Hurricane Intensities in a CO2-Warmed Climate – Knutson et al. (1998) “Hurricanes can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of these powerful storms could change in response to greenhouse gas–induced global warming. The impact of climate warming on hurricane intensities was investigated with a regional, high-resolution, hurricane prediction model. In a case study, 51 western Pacific storm cases under present-day climate conditions were compared with 51 storm cases under high-CO2 conditions. More idealized experiments were also performed. The large-scale initial conditions were derived from a global climate model. For a sea surface temperature warming of about 2.2°C, the simulations yielded hurricanes that were more intense by 3 to 7 meters per second (5 to 12 percent) for wind speed and 7 to 20 millibars for central surface pressure.” Thomas R. Knutson, Robert E. Tuleya, Yoshio Kurihara, Science 13 February 1998: Vol. 279 no. 5353 pp. 1018-1021, DOI: 10.1126/science.279.5353.1018. [FULL TEXT]

Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 June – Gray et al. (1994) “This is the third in a series of papers describing the potential for the seasonal forecasting of Atlantic basin tropical cyclone activity. Earlier papers by the authors describe seasonal prediction from 1 December of the previous year and from 1 August of the current year; this work demonstrates the degree of predictability by 1 June, the “official” beginning of the hurricane season. Through three groupings consisting of 13 separate predictors, hindcasts are made that explain 51%–72% of the variability as measured by cross-validated agreement coefficients for eight measures of seasonal tropical cyclone activity. The three groupings of predictors include 1) an extrapolation of quasi-biennial oscillation of 50- and 30-mb zonal winds and the vertical shear between the 50- and 30-mb zonal winds (three predictors); 2) West African rainfall, sea level pressure, and temperature data (four predictors); and 3) Caribbean basin and El Niño–Southern Oscillation information including Caribbean 200-mb zonal winds and sea level pressures, equatorial eastern Pacific sea surface temperatures and Southern Oscillation index values, and their changes in time (six predictors). The cross validation is carried out using least sum of absolute deviations regression that provides an efficient procedure for the maximum agreement measure criterion. Corrected intense hurricane data for the 1950s and 1960s have been incorporated into the forecasts. Comparisons of these 1 June forecast results with forecast results from 1 December of the year previous and 1 August of the current year are also given.” Gray, William M., Christopher W. Landsea, Paul W. Mielke, Kenneth J. Berry, 1994: Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 June. Wea. Forecasting, 9, 103–115. doi: http://dx.doi.org/10.1175/1520-0434(1994)0092.0.CO;2 . [FULL TEXT]

Strong Association Between West African Rainfall and U.S. Landfall of Intense Hurricanes – Gray (1990) “Intense hurricanes occurred much more frequently during the period spanning the late 1940s through the late 1960s than during the 1970s and 1980s, except for 1988 and 1989. Seasonal and multidecadal variations of intense hurricane activity are closely linked to seasonal and multidecadal variations of summer rainfall amounts in the Western Sahel region of West Africa. The multidecadal nature of West African precipitation variations and their association with variations of intense Atlantic hurricane activity can be observed in data going back nearly a century. The apparent recent breaking of the 18-year Sahel drought during 1988 and 1989 suggests that the incidence of intense hurricanes making landfall on the U.S. coast and in the Caribbean basin will likely increase during the 1990s and early years of the 21st century to levels of activity notably greater than were observed during the 1970s and 1980s.” William M. Gray, Science, New Series, Vol. 249, No. 4974 (Sep. 14, 1990), pp. 1251-1256, DOI: 10.2307/2877855.

The dependence of hurricane intensity on climate – Emanuel (1987) “Tropical cyclones rank with earthquakes as the major geophysical causes of loss of life and property. It is therefore of practical as well as scientific interest to estimate the changes in tropical cyclone frequency and intensity that might result from short-term man-induced alterations of the climate. In this spirit we use a simple Carnot cycle model to estimate the maximum intensity of tropical cyclones under the somewhat warmer conditions expected to result from increased atmospheric CO2 content. Estimates based on August mean conditions over the tropical oceans predicted by a general circulation model with twice the present CO2 content yield a 40–50% increase in the destructive potential of hurricanes.” Kerry A. Emanuel, Nature 326, 483 – 485 (08 April 1987); doi:10.1038/326483a0. [FULL TEXT]

Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation Influences – Gray (1984) “This is the first of two papers on Atlantic seasonal hurricane frequency. In this paper, seasonal hurricane frequency as related to E1 Niño events during 1900–82 and to the equatorial Quasi-Biennial Oscillation (QBO) of stratospheric zonal wind from 1950 to 1982 is discussed. It is shown that a substantial negative correlation is typically present between the seasonal number of hurricanes, hurricane days and tropical storms, and moderate or strong (15 cases) El Niñ off the South American west coast. A similar negative anomaly in hurricane activity occurs when equatorial winds at 30 mb are from an easterly direction and/or are becoming more easterly with time during the hurricane season. This association of Atlantic hurricane activity with El Niño can also be made with the Southern Oscillation Index. By contrast, seasonal hurricane frequency is slightly above normal in non-El Niño years and substantially above normal when equatorial stratospheric winds blow from a westerly direction and/or are becoming more westerly with time during the storm season. El Niño events are shown to be related to an anomalous increase in upper tropospheric westerly winds over the Caribbean basin and the equatorial Atlantic. Such anomalous westerly winds inhibit tropical cyclone activity by increasing tropospheric vertical wind shear and giving rise to a regional upper-level environment which is less anticyclonic and consequently less conductive to cyclone development and maintenance. The seasonal frequency of hurricane activity in storm basis elsewhere is much less affected by El Niño events and the QBO. Seasonal hurricane frequency in the Atlantic and the stratospheric QBO is hypothesized to be associated with the trade-wind nature of Atlantic cyclone formation. Tropical cyclone formation in the other storm basins is primarily associated with monsoon trough conditions which are absent in the Atlantic. Quasi-Biennial Oscillation-induced influences do not positively enhance monsoon trough region vorticity fields as they apparently do with cyclone formations within the trade winds. Part II discusses the utilization of the information in this paper for the development of a forecast scheme for seasonal hurricane activity variations.” Gray, William M., 1984: Atlantic Seasonal Hurricane Frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation Influences. Mon. Wea. Rev., 112, 1649–1668. doi: http://dx.doi.org/10.1175/1520-0493(1984)1122.0.CO;2. [FULL TEXT]

One Response to “Papers on hurricanes and global warming”

  1. […] 2012/11/01: AGWObserver: Papers on hurricanes and global warming […]

Leave a comment